Aquatic Animal Diseases

Training Guide

SART Training Media
Aquatic Animal Diseases
Training Guide

Prepared in 2007 by:
Kathleen Hartman, DVM, PhD
Aquaculture Epidemiologist
USDA - APHIS - Veterinary Services

Denise Petty, DVM
Assistant Professor, Large Animal Clinical Sciences
College of Veterinary Medicine
University of Florida, Gainesville

Charles M. Brown
Coordinator for Information/Publication Services
Agriculture and Biological Engineering Department
University of Florida, Gainesville

Carol J. Lehtola
Associate Professor
Agriculture and Biological Engineering Department
University of Florida, Gainesville

Updated in 2018 by:
Kathleen Hartman, D.V.M., Ph.D.
Aquaculture Program Leader
USDA-APHIS-Veterinary Services

Denise Petty, D.V.M.
Assistant Professor
University of Florida, College of Veterinary Medicine-LACS
Owner of North Florida Aquatic Veterinary Services

Katharine Starzel, D.V.M.
Field Operations (FiOps), District 1 (D1)
USDA-APHIS- Veterinary Services

Copyright by Florida Department of Agriculture and Consumer Services Published January 2007
SART Training Media are available for download from the Florida SART Web site <www.flsart.org>.
Contents

About Florida SART 1
Specific Learning Objectives 2
Resources 3
Training Slides Appendix A
About Florida SART

- SART is a multi-agency coordination group.
- SART is made up of over 25 partner agencies (state, federal and non-governmental organizations).
- SART provides preparedness and response resources for Emergency Support Function 17 [(ESF 17) Animal and Agricultural Issues].
- SART statutory authority
 - State Emergency Management Act (Section 252.3569, Florida Statutes)

SART Mission

Empower Floridians through training and resource coordination to enhance all-hazard disaster planning and response for animal and agricultural issues.

SART Goals

- Support the county, regional and state emergency management efforts and incident management teams.
- Identify county resources available for animal and/or agricultural issues.
- Promote the cooperation and exchange of information of interested state, county and civic agencies.
Specific Learning Objectives

At the end of this training module, participants will be able to:

- Identify the difference between an emerging and an endemic disease
- Provide examples and characteristics of emerging aquatic diseases affecting finfish, crustaceans and molluscs
- Provide examples and characteristics of endemic aquatic diseases affecting finfish, crustaceans and molluscs
- Identify key resources available for additional information
Resources

The following are sources of additional information about the subjects mentioned in this introduction.

University of Florida Tropical Aquaculture fact sheets
https://tal.ifas.ufl.edu/extensionoutreach/extension-publications/

USDA Southern Regional Aquaculture Center / Texas A&M and Mississippi State
https://fisheries.tamu.edu/aquaculture/diseases/

Florida Division of Emergency Management
http://www.floridadisaster.org

United States Department of Agriculture (USDA)
http://www.usda.gov

Florida Department of Agriculture and Consumer Services (FDACS)
http://www.doacs.state.fl.us

Florida Division of Aquaculture home page
https://www.freshfromflorida.com/Divisions-Offices/Aquaculture

Aquaculture Best Management Practices manual can be accessed directly at

eXtension Freshwater Aquaculture Community

USDA Animal and Plant Health Inspection Service (APHIS)
http://www.aphis.usda.gov

World Organisation for Animal Health (OIE)
http://www.oie.int

Safety for Fish Farm Workers video on the National Ag Safety Database (NASD), English and Spanish versions available from the following link
http://nasdonline.org/search.php?query=safety+for+fish+farm+workers
Resources, continued

Spawn, Spat, and Sprains book produced by the Alaska Sea Grant College Program. The entire book can be downloaded from the following link
http://www.uaf.edu/seagrant/Pubs_Videos/pubs/AN-17.pdf

University of Florida Institute of Food and Agricultural Sciences Electronic Data Information Source (EDIS) fact sheets for aquaculture, including diseases, can be found at the following links
http://edis.ifas.ufl.edu/DEPARTMENT_VETERINARY_MEDICINE
http://edis.ifas.ufl.edu/DEPARTMENT_FISHERIES_AND_AQUATIC_SCIENCES
Aquatic Animal Diseases

Appendix A: Training Slides

SART Training Media
Aquatic Animal Diseases

Prepared by:
Kathleen Hartman, D.V.M., Ph.D.
Aquaculture Epidemiologist, USDA-APHIS-VS

Denise Petty, D.V.M.
Assistant Professor
Large Animal Clinical Sciences
College of Veterinary Medicine
University of Florida, Gainesville

Carol J. Lehtola
Associate Professor
Agriculture and Biological Engineering Department
University of Florida, Gainesville

Charles M. Brown
Coordinator for Information/Publication Services
Agriculture and Biological Engineering Department
University of Florida, Gainesville

Updated December 2018 by:
Kathleen Hartman, D.V.M., Ph.D.
Aquaculture Program Leader
USDA-APHIS-Veterinary Services

Denise Petty, D.V.M.
Assistant Professor
University of Florida, College of Veterinary Medicine-LACS
Owner of North Florida Aquatic Veterinary Services

Katharine Starzel, D.V.M.
Field Operations (FiOps), District 1 (D1)
USDA-APHIS - Veterinary Services

Appendix A: Slides 1-3
Learning Objectives

• Identify the difference between an emerging and an endemic disease
• Provide examples and characteristics of emerging aquatic diseases affecting finfish, crustaceans and molluscs
• Provide examples and characteristics of endemic aquatic diseases affecting finfish, crustaceans and molluscs
• Identify key resources available for additional information

Aquatic Disease Categories

• Emerging
 – Exotic disease with potentially significant impact
 – Not common or not present
• Endemic
 – Common in United States
 – May show regional or seasonal patterns

Emerging Diseases for Florida Aquaculture

• Finfish
 – Spring Viremia of Carp (SVC)
 – Tilapia Lake Virus (TiLV)
• Crustaceans
 – White Spot Virus
 – Taura Syndrome
 – Yellowhead Virus
 – Early Mortality Syndrome
• Molluscs
 – Bonamiosis (*Bonamia exitiosa*, *B. ostrea*, *Mikrocytos roughleyi*)
Endemic Diseases for Florida Aquaculture

- **Finfish**
 - Koi Herpesvirus (KHV)
 - Largemouth Bass Virus (LMBV)
 - Other parasitic, fungal and bacterial diseases

- **Molluscs**
 - Perkinsosis
 - Multinucleate Sphere X (MSX)

Emerging Diseases

Finfish

- “True” fish with fins and permanent gills
 - Term distinguishes true fish from crayfish, jellyfish, starfish, etc.

- **Groups include**
 - Cyprinids (e.g., common grass and bighead carps)
 - Centrarchids (e.g., largemouth and smallmouth bass)
 - Cichlidae (e.g., tilapia)

- **Species harvested or in culture include**
 - Common carp (Cyprinus carpio), Goldfish (Carassius auratus)
 - Tilapia (Nile Oreochromis niloticus or Blue (O. aureus))
 - Largemouth bass (Micropterus salmoides)
Spring Viremia of Carp (SVC)

- OIE notifiable disease
- Caused by a virus
- First official U.S. report in spring 2002
 - Farmed koi in NC, VA
 - Wild carp in WI
 - Recent outbreaks in WA, MO
- Major industry concern
- Can cause mortalities up to 70% in younger fish

General Facts
- One of several Rhabdoviruses that cause diseases in fish
- Distribution – Reported in Europe, Middle East, Russia, North and South America, Asia
- Species affected – Koi/Common carp, Grass carp, Bighead carp, Silver carp, Crucian carp, goldfish (C. auratus)

Disease Risk Factors
- Water temperature very important – 54-68°F (12-28°C)
- Fish age, other stressors, temperature fluctuation and immune status are also factors
- Transmitted through gills, feces, fish lice, birds, equipment, water and mud
Spring Viremia of Carp (SVC)

Treatment
- No treatment available
- Virus infective in mud for up to 42 days

Depopulate infected fish, then disinfect tank/pond

Disinfection agents/techniques
- Gamma/UV radiation
- Chlorination at 500 ppm for 10 minutes
- pH less than 4.0 or greater than 10.0
- Heating to 140°F (60°C) for 15 minutes

Prevention
- Buy from SVC-free source
- Quarantine/Biosecurity
 - Keep shipments separate
 - Keep species separate (e.g., koi separate from goldfish)
 - Refrain from Japanese-style shows where fish are commingled
- Reputation of fish supplier
- Among finfish, only SVC-affected species require USDA-APHIS import permit and inspection at time of import

Crustaceans

- Invertebrates characterized by a hard outer shell and jointed appendages and bodies
- Two major classes
 - Malacostracans (i.e., crab, shrimp, lobster)
 - Entomostracans (i.e., fairy shrimp, water fleas, barnacles)
- Species harvested or in culture include
 - Pacific White shrimp (*Litopenaeus vannamei*)
 - Blue shrimp (*Litopenaeus stylirostris*)
 - Giant Tiger shrimp (*Penaeus monodon*)
White Spot Disease

- Baculovirus affecting mostly juvenile Pacific White shrimp with high mortality
- Distribution
 - Asia, North, Central and South America
 - Native Florida shrimp may harbor similar virus
- Outbreak in Kaua‘i, HI in April 2004
- Listed disease in the Florida Division of Aquaculture’s Best Management Practices (BMP)

Taura Syndrome Virus

- Affects the Pacific White shrimp; all cultured species susceptible
 - Affects post-larval, juvenile, sub-adult life stages
 - Mortality rate for these life stages 40 to 90%
 - Survivors may become carrier for life
- Distribution
 - Asia, Central, South and North America
 - Infected Central and South American shrimp introduced disease into Asia
 - Outbreaks in Texas and South Carolina in late 1990s

Risk factors
- Seagulls feeding on infected/dead shrimp may carry virus pond to pond, farm to farm
- Listed disease in the Florida Division of Aquaculture’s BMP
Yellow Head Virus

- Affects juvenile Giant Tiger shrimp
 - High mortality in early and late juvenile life stages
- Afflicted shrimp show signs of gross yellowing of the cephalothorax
- Distribution
 - Asia
 - Americas – Possible, however not yet documented
- Listed disease in the Florida Division of Aquaculture’s BMP

IHHNV

- Infectious Hypodermal and Hematopoietic Necrosis Virus
- Affects Blue shrimp (L. stylirostris) – up to 90% mortality
- White leg shrimp (L. vannamei) less affected
 - Resistant lines have been developed
 - Affected shrimp exhibit bent rostrum and broken antennae
- Distribution
 - SE Asia
 - Americas – Pacific Coast (NW Mexico to Chile)

Molluscs

- Invertebrate animals with soft unsegmented bodies, a muscular foot and a body enclosed in a mantle
- Groups include
 - Cephalopods (e.g., squid, octopus)
 - Gastropods (e.g., abalone)
 - Bivalves (e.g., clams, mussels, oysters)
- Species harvested or in culture include
 - Eastern oyster (Crassostrea virgíñica)
 - Pacific oyster (Crassostrea gigas)
 - Flat oyster (Ostrea equestris)
 - Hard clams (Mercenaria mercenaria)
Mollusc Emerging Disease

Bonamiosis

- Caused by *Bonamia ostrea* (Northern hemisphere), a protozoan parasite
- Affects flat oysters
 - 2 new species affect the Asian oyster (*Crassostrea ariakensis*) and Flat oysters
 - Most infected oysters appear normal
- Distribution
 - France, Ireland, Italy, the Netherlands, Spain, the United Kingdom (excluding Scotland), and the United States (CA, ME and WA)
 - Confirmed cases in VA and NC in 2003 and 2004

Seaside Organism Disease (SSO)

- Caused by the protist, *Haplosporidium costale*
- Affects the Eastern oyster
- Seasonal, complex life cycle ending in final sporulation killing the host
- Distribution on east coast of United States and Canada (from Virginia to Nova Scotia) in water with a salinity over 25 ppt
 - Outbreaks in Canada in 2003

Quahog Parasite X (QPX)

- Net slime mold in phylum, Labyrinthulomycota
- Affects Hard clams
- Can be found from Virginia’s east coast to Canada
 - Recent outbreaks in Massachusetts
- Clams entering Florida must be QPX free
- Listed disease in the Florida Division of Aquaculture’s BMP
Endemic Diseases

Koi Herpesvirus (KHV)

- Highly contagious
 - Transmitted from infected fish, water and/or mud
 - Water temperature important 64 - 81°F (17 - 27°C)
- High mortalities
 - 80 to 100% mortality (higher in younger fish)
 - Can occur as soon as 24 to 48 hours after signs of disease onset
- Not transmissible to humans
- Affects koi and common carp
- Worldwide distribution
 - Reported in Europe, United States and Asia
- Reportable to OIE

Operculum removed to show gill with patchy white tips
Severe gill necrosis and discoloring

Appendix A: Slides 25-27
Koi Herpesvirus (KHV)

Treatment
- None – Virus can live in water for up to four hours
- Depopulation, then disinfect
- Disinfection techniques
 - Chlorine at 200 ppm for one hour
 - Quaternary ammonium compounds at 500 ppm for one hour (for nets)

Prevention
- Quarantine/Biosecurity
 - Keep shipments separate
 - Keep species separate
 - Avoid Japanese-style shows where fish are commingled
 - Reputation of fish supplier

Largemouth Bass Virus (LMBV)

- Iridovirus frequently present in healthy largemouth bass
 - Bass test positive, but show no clinical signs of infection
 - No LMBV-infected fish in Florida

Factors in Disease Development

- **Host Issues**
 - Immune status
 - Diet
 - Condition

- **Environment**
 - Transport
 - Handling
 - Water quality
 - Crowding/trauma
 - Contamination/pollution

- **Compromise/Infection**
 - Several etiologies
 - Commonly associated with poor management and/or water quality issues

Appendix A: Slides 28-30
Perkinsosis

- Also called “dermo” disease
- Caused by Perkinsus marinus and P. olseni
- Complex life cycle; all stages appear to be infective
- Affects Crassostrea virginica, C. gigas
 - Could infect other bivalves
- Distribution – U.S. East coast (ME to FL) and Gulf of Mexico
- Listed disease in the Florida Division of Aquaculture’s BMP

Multinucleate Sphere X (MSX)

- Caused by protist, Haplosporidium nelsoni
 - Does not survive low salinities
- Affects Crassostrea virginica, Crassostrea gigas
 - Oysters are aberrant hosts
- Distribution
 - East coast of North America, California, France, Korea and Japan
- Listed disease in the Florida Division of Aquaculture’s BMP

Things to Remember...

- Carriers and vectors
 - Survivors of viral diseases may be life-long carriers
 - Vectors can include fish, birds, parasites, equipment and personnel (i.e., YOU!)
- Viral diseases do not have treatments
- Make biosecurity/quarantine a habit
 - Personnel and equipment may be sources of disease and/or modes of transmission
 - Prevention is the best treatment in many cases
Things to Remember...

Zoonotic potential
- People with compromised immune systems are most susceptible
- Examples:
 - Atypical mycobacteriosis – bacterial infection
 - Streptococcus iniae – food handlers infected from handling live fish
 - Vibriosis – bacterial infection, especially risky for those with liver disease
 - Improper cooking practices can pass on infection

Key Resources

- University of Florida Tropical Aquaculture fact sheets
 https://tal.ifas.ufl.edu/extensionoutreach/extension-publications/
- USDA Southern Regional Aquaculture Center / Texas A&M and Mississippi State
 https://fisheries.tamu.edu/aquaculture/diseases/
- Florida Department of Community Affairs, Division of Emergency Management
 http://www.floridadisaster.org
- United States Department of Agriculture (USDA)
 http://www.usda.gov
- Florida Department of Agriculture and Consumer Services (FDACS)
 http://www.doacs.state.fl.us

Appendix A: Slides 34-36
Key Resources

- Florida Division of Aquaculture home page
 https://www.freshfromflorida.com/Divisions-Offices/Aquaculture

- Aquaculture Best Management Practices manual can be accessed directly at

- eXtension Freshwater Aquaculture Community

Key Resources

- USDA Animal and Plant Health Inspection Service (APHIS)

- World Organisation for Animal Health (OIE)
 http://www.oie.int

- Safety for Fish Farm Workers video on the National Ag Safety Database (NASD), English and Spanish versions available from the following link:

Key Resources

- Spawn, Spat, and Sprains book produced by the Alaska Sea Grant College Program. The entire book can be downloaded from the following link
 http://www.uaf.edu/seagrant/Pubs_Videos/pubs/AN-17.pdf

- University of Florida Institute of Food and Agricultural Sciences Electronic Data Information Source (EDIS) fact sheets for aquaculture, including diseases, can be found at the following links
 http://edis.ifas.ufl.edu/DEPARTMENT_VETERINARY_MEDICINE
 http://edis.ifas.ufl.edu/DEPARTMENT_FISHERIES_AND_AQUATIC_SCIENCES
Summary

• Identified the two categories of diseases in Florida
• Provided examples and characteristics of emerging diseases affecting finfish, crustaceans and molluscs
• Provided examples and characteristics of endemic diseases affecting finfish and molluscs
• Listed key resources available for additional information on aquatic animal health and disease

Thank You!